CHOOSING THE PERFECT PUMP
 BY CALCULATING TOTAL DYNAMIC HEAD

CHARTA

(Example) GPH: 3000 Multiplier: 0.05 Tubing: 2"
Eor flows over 10000 GPH Multiplier 0.05 Tubing. 2

CHART B

FRICTION IN EQUIVALENT FEET OF STRAIGHT PIPE

Choose the appearance you would like for your waterfall from the suggested choices to the left. Multiply the corresponding
GPH Per Foot by the desired Width of the Waterfall to find GPH Per Foot by the desired Width of the Waterfall to find the Recommended Flow.

SELECT TUBING \& MULTIPLIER

Find the dark blue cell in the row that corresponds with the Recommended Flow (GPH) in CHART A. The column indicates the recommended tubing size and the number in the cell is the Friction Loss in every foot of tubing. Keep Friction Loss low for greatest flow.
To find the Friction Loss of existing systems, estimate the flow through the actual tubing size used.

ADD EQUIVALENTTUBING LENGTHS
Add the equivalent lengths of all the fittings in the system, from
CHART B, to the tubing length from pump to falls to find the Equivalent Tubing Length.

CALCULATE FRICTION HEAD
Multiply the Equivalent Tubing Length in feet by the Friction Loss in the dark blue cell from CHART A to find the Friction Head of

FIND THE

TOTAL DYNAMIC HEAD

Add the Friction Head in Feet to the Vertical Head of the system. Vertical Head is the height in feet from the surfac of the water the pump will be sitting in, to the highest point the water is pumped to.

CHOOSE YOUR PUMP

Find the Total Dynamic Head (TDH) at the top of CHART C, then find the pumps below that provide at least the Recommended Flow. Grey colored cells indicate that the TDH is outside the pump's operating range and the pump will likely not last in this application. The light blue cells indicate the pump is operating within its
perating range. Dark blue means the TDH is in the pump's Best Efficiency Range, where the pump will run best and longest. If the chart gives you a choice of more than one pump, check for the type that best fits your application from the list below, then check for the lowest wattage, to save on operating costs.

- Magnetic Drive Pumps (MD-Series) - compact size, impervious to hard water, best for smaller water features Asynchronous Pumps (TT-Series) - compact size, clean water pumps, best choice for most applications - Solids Handling Pumps (PAF- and SH-Series) - mid-size solids handling, best for dirty water applications - Axial Pumps (L-Series) - very large, clean water pumps, great for low, wide falls, require large diameter plumbing

CHART C

